

Third Semester B.E. Degree Examination, Jan./Feb. 2021 Basic Thermodynamics

Time: 3 hrs.

1

Max. Marks: 100

(06 Marks)

(08 Marks)

(04 Marks)

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. Use of thermodynamic data book, steam tables are permitted.

Module-1

- a. What is thermodynamics? Differentiate between the classical and statistical approaches to thermodynamics. (06 Marks)
 - b. Classify the following into intensive and extensive properties.
 - i) Enthalpy specific entropy
 - ii) Viscosity
 - iii) Quality of steam
 - iv) Refractive index
 - v) Roll strength of class.
 - c. A new scale N of temperature is devised in such a way that the freezing point of ice is 100°N and the boiling point of water is 400°N. What is the temperature reading on this new scale when the temperature is 150°C? At what temperature both the Celsius and the new scale reading would be the same? (08 Marks)
 - OR

- **2** a. Distinguish between:
 - i) Point function and path function
 - ii) Intensive and extensive property.
 - b. What is flow work? Is it different from displacement work? (04 Marks)
 - c. To a closed system 150kJ of work is supplied. If the initial volume is $0.6m^3$ and pressure of the system changes as P = 8-4V, where P is in bar and V is in m^3 , determine the final volume and pressure of the system. (08 Marks)

Module-2

- a. State the first law of thermodynamics for a closed system undergoing change of state. Explain the property introduced by this law. (04 Marks)
 - b. What are the limitations of first law of thermodynamics?
 - c. A stationary fluid system goes through a following cycle: Process 1-2 isochoric heat addition of 235kJ/kg Process 2-3 adiabatic expansion to its original pressure with loss of 70kJ/kg in internal energy.

Process 3-1 isobaric compression to its original volume with heat rejection of 200kJ/kg Prepare a balance sheet of energy quantities. (12 Marks)

3

1 of 3

LIBRAR

- **4** a. Define the following:
 - i) Thermal Energy Reservoir (TER)
 - ii) Mechanical Energy Reservoir (MER).
 - b. Show that efficiency of a reversible engine is independent of the nature or amount of the working substance going through the cycle. (06 Marks)
 - c. An inventor claims that his engine has the following specifications:

Heating value of the fuel	: 74500kJ/kg
Temperature limits	: 750°C and 25°C
Power developed	: 75kW
Fuel burnt	$\cdot 0.07 kg/min$

Fuel burnt : 0.0/kg/min

State whether claim is valid or not.

Module-3

- **5** a. Explain the conditions for reversibility.
 - b. Show that heat transfer through a finite temperature difference is irreversible. (06 Marks)
 - c. Determine the entropy change of 4kg of a perfect gas whose temperature varies from 127°C to 227°C during a constant volume process. The specific heat varies linearly with absolute temperature and is given by the relation $C_v = (0.48 + 0.0096T)kJ/kg K$. (08 Marks)

OR

- 6 a. Define entropy and show that entropy is a property of system. (06 Marks)
 - b. Write the criteria of reversibility, irreversibility and impossibility to a thermodynamic cycle. (06 Marks)
 - c. A Carnot engine absorbs 200J of heat from a reservoir at the temperature of the normal boiling point of water and rejects heat to a reservoir at the temperature of the triple point of water. Find the heat rejected, the work done by the engine and the thermal efficiency.

(08 Marks)

Module-4

- 7 a. Define the following:
 - i) Thermodynamic dead state
 - ii) Energy

Prove that, η_{II} =

C.

iii) Second law efficiency.

b. Energy is always conserved, but its quality is always degraded. Explain. (04 Marks)

(10 Marks)

(08 Marks)

(06 Marks)

OR

- 8 a. Draw the phase equilibrium diagram on P-V coordinate for a pure substance, whose volume decreases on melting. (04 Marks)
 - b. State whether the following samples of steam are wet, dry or superheated: Justify your answer.
 - i) Temperature = 200° C, pressure = 1.2MPa
 - ii) Pressure = 1MPa volume = 0.235m³/kg
 - iii) Pressure = 500kPa enthalpy = 2530kJ/kg
 - iv) Temperature = 100° C entropy = 7.35kJ/kg K
 - c. What is dryness fraction of steam? Explain the method of estimating quality of wet steam by a combined separating and throttling calorimeter. (08 Marks)

(00 WIAIKS)

(04 Marks)

(10 Marks)

(06 Marks)

17ME33

(04 Marks)

(04 Marks)

- Module-5
- 9 a. State 'Dalton's law of partial pressure'
 - b. Define the following terms:
 - i) Saturated air
 - ii) Wet bulb temperature
 - iii) Specific humidity
 - iv) Dew point temperature.
 - c. A mixture of gas has the following volumetric analysis. $O_2 = 30\%$, $CO_2 = 40\%$, $N_2 = 30\%$. Determine:
 - i) The analysis on a mass base.
 - ii) The partial pressure of each component if the total pressure is 100kPa and temperature is 32°C.
 - iii) The molecular weight of mixture.

(12 Marks)

- OR
- 10 a. What is the generalized compressibility chart? Explain.
 - b. Write the Vander Waal's equation of state. In what ways, it is an improvement over the ideal gas equation of state. (04 Marks)
 - c. One kg-mol of oxygen undergoes a reversible non-flow isothermal compression and the volume decreases from 0.2m³/kg to 0.08m³/kg and the initial temperature is 60°C. If the gas obeys Vander Waal's equation find: i) the work done during the process ii) the find pressure.
 (12 Marks)

(04 Marks)